Cellular Delivery of Doxorubicin via pH-Controlled Hydrazone Linkage Using Multifunctional Nano Vehicle Based on Poly(β-L-Malic Acid)

نویسندگان

  • Rameshwar Patil
  • Jose Portilla-Arias
  • Hui Ding
  • Bindu Konda
  • Arthur Rekechenetskiy
  • Satoshi Inoue
  • Keith L. Black
  • Eggehard Holler
  • Julia Y. Ljubimova
چکیده

Doxorubicin (DOX) is currently used in cancer chemotherapy to treat many tumors and shows improved delivery, reduced toxicity and higher treatment efficacy when being part of nanoscale delivery systems. However, a major drawback remains its toxicity to healthy tissue and the development of multi-drug resistance during prolonged treatment. This is why in our work we aimed to improve DOX delivery and reduce the toxicity by chemical conjugation with a new nanoplatform based on polymalic acid. For delivery into recipient cancer cells, DOX was conjugated via pH-sensitive hydrazone linkage along with polyethylene glycol (PEG) to a biodegradable, non-toxic and non-immunogenic nanoconjugate platform: poly(β-l-malic acid) (PMLA). DOX-nanoconjugates were found stable under physiological conditions and shown to successfully inhibit in vitro cancer cell growth of several invasive breast carcinoma cell lines such as MDA-MB-231 and MDA-MB- 468 and of primary glioma cell lines such as U87MG and U251.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of poly(β-L-malic acid)-based charge-conversional nanoconjugates for tumor-specific uptake and cellular delivery

In this study, a multifunctional poly(β-L-malic acid)-based nanoconjugate with a pH-dependent charge conversional characteristic was developed for tumor-specific drug delivery. The short branched polyethylenimine-modified poly(β-L-malic acid) (PEPM) was first synthesized. Then, the fragment HAb18 F(ab')2 and 2,3-dimethylmaleic anhydride were covalently attached to the PEPM to form the nanoconju...

متن کامل

Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging.

A multifunctional unimolecular micelle made of a hyperbranched amphiphilic block copolymer was designed, synthesized, and characterized for cancer-targeted drug delivery and non-invasive positron emission tomography (PET) imaging in tumor-bearing mice. The hyperbranched amphiphilic block copolymer, Boltorn(®) H40-poly(L-glutamate-hydrazone-doxorubicin)-b-poly(ethylene glycol) (i.e., H40-P(LG-Hy...

متن کامل

Magnetic nanoparticles grafted pH-responsive poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone as a nano-carrier for oral controlled delivery of atorvastatin

Objective(s): Researchers have intended to reformulate drugs so that they may be more safely used in human body. Polymer science and nanotechnology have great roles in this field. The aim of this paper is to introduce an efficient drug delivery vehicle which can perform both targeted and controlled antibiotic release using magnetic nanoparticles grafted pH-responsive polymer.<s...

متن کامل

Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery.

A new type of multifunctional polymeric micelle drug carrier for active intracellular drug delivery was prepared and characterized in this study. The micelle is a nano-supramolecular assembly with a spherical core-shell structure, and its surface and core were modified with piloting molecules for cancer cells and pH-sensitive drug binding linkers for controlled drug release, respectively. In or...

متن کامل

Dual Nano-Carriers using Polylactide-block-Poly(N-isopropylacrylamide-random-acrylic acid) Polymerized from Reduced Graphene Oxide Surface for Doxorubicin Delivery Applications

The stimuli-responsive nanocomposites were designed as drug delivery nanocarriers. Thanks to promising properties such as large surface area and easy chemical functionalization, the graphene derivatives can be used for the drug delivery applications. For this purpose, in the current work, the poly(L,D-lactide)-block-poly(N-isopropylacrylamide-rand-acrylic acid) grafted from reduced graphene oxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012